

India's Best Institute for CHEMICAL ENGINEERING

CHEMICAL ENGINEERING **REVISED AS PER GATE**

CT D

F

CHEMICAL TECHNOLOGY

GATE & PSUs

[1]

GATE & PSUs

Chemical Technology (Syllabus)

Inorganic chemical industries (sulfuric acid, phosphoric acid, chlor-alkali industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; polymerization industries (polyethylene, polypropylene, PVC, and polyester synthetic fibers).

CONTENT

1.	INTRODUCTION	03-04
2.	SULFUR & SULFURIC ACID	05-12
3.	FERTILIZER INDUSTRY	13-27
4.	CHLOR-ALKALI INDUSTRY	28-36
5.	INDUSTIRAL GASES & CEMENT INDUSTRY	37-44
6.	NATURAL PRODUCT INDUSTRY	45-58
7.	PULP AND PAPER INDUSTRY	59-65
8.	PETROLEUM INDUSTRY	66-82
9.	POLYMER INDUSTRY	83-90
10.	CURRENT SCENARIO OF INDIAN	
	CHEMICAL INDUSTRIES	91-92
11.	PRACTICE SET-1	93-97
12.	Practice Set-2 & 3	98-110

[2]

CHAPTER-1

INTRODUCTION

- 1. Chemical and allied Industry have first rank among all manufacturing industry both in capital assets and importance to the country economy.
- 2. Chemical Industry plays important role in every part of life. For example foods, drugs, petroleum, and fertilizer industry
- 3. Chemical Industry is different than other industry as in chemical Industry we start from raw material and end up with consumer product through series of physical and chemical change.
- 4. During the study of chemical industry fundamentals of chemistry, thermodynamics, kinetics and economics are always valid.
- 5. Chemical processes are used to produce chemical products and which includes chemical transformation(s).
- 6. Specific products produced by the chemical and pharmaceutical include: aspirin, ibuprofen, paracetamol, naproxen, labetalol, etc
- 7. These active pharmaceutical ingredients (APIs) are produced by chemical reactions involving organic chemicals (organic chemistry).
- 8. These are chemically formulated products manufactured from basic chemicals which are used by and domestic consumers for specific purposes. For example: coatings, adhesives, pharmaceutical products, pesticides, cosmetics, disinfectants etc
- 9. Major feed stocks for chemical industries are coal, petroleum, biomass, oils and fats, sulphur, salts lime stone, rock phosphate etc.
- 10. Major chemicals products and their areas of application
 - i) **Plastics and polymers:** Agriculture water management, packaging, automobiles, telecommunications, health and hygiene, education.
 - ii) Synthetic rubber: Transportation industry, textile industry, industrial equipment living.
 - iii) Synthesis fibre: Non woven and woven fibre in automobile, hosiery, textile
 - iv) Soap and synthetic detergents: Health and hygiene domestic as well as industrial
 - **v) Industrial chemicals:** Drugs and pharmaceuticals pesticides, explosives, surface loading, dyes, ladditives adhesive oil fields, anti-oxides, chemicals, metal extraction, printing ink, paints
 - vi) Sugar and alcohol: Food alcoholic brewages, chemical feed store ethoxylate, bio fuel
 - vii) Pulp and paper: Letting and printing paper, culture paper, new paper, tissue paper, packaging paper.
 - viii) Fertilizer: Agriculture, chemical industry (ammonia and uses)
 - ix) Agrochemicals: Pesticides
 - x) Minerals acids: Chemical industry organic and inorganic

Chemical Industry:

Food: Fertilizer & Agrochemical

Clothing: Synthetic fibers, Dyestuffs, Textiles, Auxiliaries, Specialty Chemicals **Shelter:** Polymer composites, Coating, New Performance Materials

Health Care: Pharmaceuticals, Polymers, Synthetics, Detergent

[3]

Quality of Life: Transportation, Education, Fuel, Electricity, Energy, Water supply, Management, Communication, Polymers & Industrial chemicals

Summary:

Industrial production = f [Unit operation, unit process]

- Unit operation \rightarrow Physical treatment steps
- Unit process \rightarrow Chemical treatment steps.
- > Operations that brings physical changes in raw materials is called as unit operations.
- Unit process brings chemical changes in raw materials.
- > Industrial production = f[unit operation, unit process].

[4]

CHAPTER-2

SULFUR & SULFURIC ACID

1. Sulfur (S) is the chemical element that has the atomic number 16. It is denoted with symbol (S).

2. It is an abundant, multivalent non metal. Sulfur in its native form is a bright yellow crystalline solid.

3. Its commercial uses are primarily in fertilizer, but it is also widely used in black gun powder, match sticks, insecticides and fungicides. It has m.p. 119° C.

Consumption Pattern:

1.80 – 90% of sulfur containing raw materials are converted to commercial oxidized forms:

 SO_2 , SO_3 , H_2SO_4 , Oleum ($H_2SO_4 + SO_3$)

2. End uses of elemental S are:

- (a) 85 to 90% for sulfuric acid manufacture.
- (*b*) Rubber vulcanization agent
- (c) Gun powder, sulfur dyes
- (*d*) Paper and pulp.

3. Application for Sulfuric Acid:

- (a) Phosphate fertilizer
- (*b*) Petroleum refining
- (c) In organic chemicals and pigment
- (d) Copper leaching
- (e) synthetic rubber and plastic
- (f) Industrial organic chemicals
- (g) Pulps and paper

Process:

- 1. Elemental sulfur mining from salt domes
- 2. Hydrogen sulfide conversion from natural gas
- 3. Essential sulfur from ironpyrite

1. Elemental Sulfur Mining by Frasch process

Raw Materials:

- * Sulfur deposits in salt domes
- * Large supply of hot water.

Process Description: (Fig. 1)

1. Wells drilled into free sulfur bearing salt domes. Treated hot water is pumped into sulfur deposit melts with sulfur; water moves upward and outward to bleeder wells on outer periphery of area when it is aerated and discharged.

[5]

- Molten sulfur sinks to bottom of casing and is jet pumped with compressed air to sump separation units and shipment or storage.
- 3. Filtration is sometimes used to remove carbonaceous and mineral matter.

Major Engineering Problems:

(a) Heat transfer in melting and shipping operations.

- (b) Finding suitable sources of treated water.
- (c) Corrosion.

2. Oxidation Reduction of H₂S Reference flow sheet Fig. 2.

Chemical Reaction

(a) $2H_2S + 3O_2 \rightarrow 3SO_2 + 2H_2O$ (b) $4H_2S + 2SO_2 \xrightarrow{Al_2O_3} S_6(g) + 4H_2O$

Raw Material

 H_2S from natural gas and petroleum refinery.

Process Description:

(i) H_2S and air is burned in a chemical reaction.

- (ii) The product SO_2 oxidizes H_2S by reaction
- (iii) In two stage catalytic converter with inter cooling and condensing.

[6]

GATE & PSUs

CHEMICAL TECHNOLOGY

Question-2: Which one of the following options represents the major components of oleum? (A) Sulfuric acid and nitric acid (GATE-2023: 2-Marks) (B) Concentrated sulfuric acid and petroleum jelly (C) Sulfuric acid and hydrochloric acid (D) Sulfuric acid and sulfur trioxide Answer: D $Oleum (H_2SO_4 + SO_3 = H_2S_2O_7)$ So, the major components of oleum is sulfuric acid and sulfur trioxide. **Question-3:** In the production of H_2SO_4 is equilibrium yield of SO_3 is proportional to (b) $P_T^{3/2}$ (c) $P_T^{1/2}$ (d) P_{T}^{2} (a) P_T Answer: (C) **Question-4:** Production of elemental sulfur from pyrite is known as : (a) Finnish process (b) Clause process (d) Frasch process (c) H_2S recovery Question-5: Which of the following statement is not correct in contact process of H₂SO₄ production. (a) Pt catalyst widely used for Contact process (b) V_2O_5 relatively immune to poison (c)Low initial investment required for V_2O_5 catalyst (d) High SO_2/O_2 input is required V_2O_5 Catalyst Ans: d **IMPORTANT POINTS TO REMEMBER**

- 1. 20% Oleum means that in 100 Kg, there are 80 Kg of H_2SO_4 and 20Kg of SO_3
- 2. For SO₂ oxidation equilibrium constant proportional to $P_T^{-0.5}$.
- 3. V_2O_5 and Pt catalyst used in H_2SO_4 production.
- 4. The sulfur usually contains arsenic As which attacks the vanadium or platinum catalyst in the SO_2 to SO_3 conversion in contact process for H_2SO_4 .
- 5. 20% oleum means that in 100 kg, there are 80 kg of H_2SO_4 and 20 kg of SO_3
- 6. High O_2 /SO₂ desired for V_2S_5 catalyst in production of H_2SO_4 .
- 7. Yield of SO₂ proportional to $P_T^{0.5}$ in SO₂ oxidation.
- 8. Cast iron is not for use in oleum system.

[11]

PRACTICE QUESTIONS										
1.	What is the chemical formula of oleum:									
	(a) SO_2 (b) SO	3	(c) H_2SO_4	(d) $(H_2SO_4 + SO_3)$						
2.	Frasch process is the proc	sch process is the process of mining is related to which industry:								
	(a) O_2 production (b) Aluminium mining									
	(c) Sulfur mining (d) Production of sugar									
3.	6. Chamber and contact process are related with which chemical production									
	(a) CO_2 (b) H_2	SO_4 (c) I	NaOH	(d) HNO_3						
4.	For contact H_2SO_4 process which catalyst preferred:									
	(a) Ni	(<i>b</i>) Pt	(c) V_2O_5	(<i>d</i>) Fe						
5.	Which is not advantage o	f V ₂ O ₅ cataly	yst?							
	(<i>a</i>) Relatively immune to	poisons	(b) Low initia	l investment						
	(c) Only require 5% repla	(c) Only require 5% replacement per year (d) None of these								
6.	Elemental S finds its maj	or utilization	in which of the fie	eld.						
	(a.) As a vulcanization agent									
	 (b.) In sulphuric acid manufacture (c.) Pulp and paper (d.) Gun powder, sulphur dyes 7 Elemental S can be obtained from which of the following method?									
7										
7.	(a) Frasch process		ien of the followin							
	(b.) Oxidation reduction	of H ₂ S								
	(c.) Finish process	-								
	(d.) All of the above									
8.	Which of the following c	atalyst is used	d in finish process	for recovering elemental S from pyrites?						
	(a.) Zn O	(b) $Al_2 O_3$	(c) H_2SO_4	(d) V_2O_5						
9.	98% H_2SO_4 is obtained the	rough								
	(a.) Contact process		(b) Chamber j	process						
10	(c.) Frasch process		(d) None							
10.	Oreum is a mixture of (a_1) H-SO, and H-O									
	(a.) H_2SO_4 and H_2O_2									
	(c.) H_2SO_4 and SO_2									
	(d.) SO_3 and SO_2									

ANSWER KEY										
1	d	2	с	3	b	4	с	5	d	
6	b	7	d	8	b	9	a	10	с	

[12]

CHAPTER-3

FERTILIZER INDUSTRIES

Fertilizer Industry

Nitrogen: requiring early stages of plant growth to promote development of stems and leaves Phosphorous: early growth and accelerates seeding or fruit formation in later stages of growth Potassium 'K' for the development of starches of potatoes and grains, sugar of fruits and vegetables and fibrous material of plants an ample supply of potassium in soil sometimes helps to prevent disease and lessen the effects of excessive nitrogen application.

K along N & P: Primary nutrients considered essential for plant growth.

1. NITROGEN INDUSTRIES

i. Ammonia (NH₃)

End uses of NH₃

- 1) Direct application as fertilizer
- 2) Uses (for both fertilizers & plastics)
- 3) Ammonium phosphates
- 4) Nitric acid
- 5) Ammonium nitrate
- 6) Ammonium sulphate
- 7) Acrylonitrile

Type of Nitrogen

1) Mixed fertilizers (N, P, K)

(expressed as wt% total N, $P_2 O_5$, $K_2 O$ (e.g. 5 - 10 - 5)

2) Chemical nitrogen Fertilizers

Method of production

 \rightarrow Based on pressure – catalytic reaction of N₂ and H₂

$$N_2 + 3H_2 \xrightarrow{Fe} 2NH_3$$
 8-30% conversion

Grades

- 1) Fertilizer Granular coated \overline{C} non hygroscopic dust such as phosphate rock or limestone (40 42%N)
- 2) Liquor: mixture of urea in NH₃ sol (45% total N 30% NH₃ 15% urea)
- 3) Slow release: Contains low molecular weight urea polymers

End uses

- i) Solid fertilizer (53%)
- ii) Liquid fertilizer (31%)
- iii) Formaldehyde resins
- iv) Melamine

[13]

